中电网移动|移动中电网|高清图滚动区

新型电感器磁芯满足业界对更小、更安静、更可靠电源所需

作者:Patrik Kalbermatten,基美电子(KEMET)
 
工程复合磁芯使电感器制造商可将大电感集成到小体积中。FlakeComposite新技术将磁芯性能提升到了一个新的水平,并增加了额外的机械弹性,可支持新型的超薄器件。
 
功率电感器是用于管理开关转换器中能量流的关键器件,可确保平稳输电并帮助协调换向。为了保持电流流动足够长的时间,而使电路在主开关关闭时能正确工作,工程师需要选择合适的电感值来存储足够的能量。
 
虽然为了支持连续或不连续电流模式(CCM或CDM)或谐振工作,电感值的计算会根据转换器的类型而有所不同,但对于给定的额定电流,电感值与尺寸相比通常要大。此外,还需要在预期频率范围内提供稳定性能,而对于汽车或航空航天等应用来说,还需要提供温度稳定性并提高最高工作温度。
 
工程电感器达到极限

电感器的属性受物理定律限制。对磁芯材料进行精心设计,有助于将这些限制推向极限,从而为工程师的应用提供最佳参数组合。通常使用的磁芯材料包括锰锌(MnZn)和镍锌(NiZn)铁氧体,以及由特殊配方合金颗粒(由绝缘粘合剂隔开)所形成的金属粉末芯。尽管通过增加磁芯体积来解决电源应用很困难,但薄膜电感器也可以通过沉积钴基合金来制造,从而实现具有良好饱和性能的高磁导率。
 
尽管存在一些缺点,但铁氧体磁芯具有高磁导率——NiZn材料高达300左右,而MnZn则会更高。这些材料往往很脆,因此不适合嵌入到PCB中,或制造薄型电感器,例如平面横向通量器件。此外,它们会经历突然的饱和,而引起电感随直流偏置的增加而发生急剧滚降。
 
就粉末芯而言,流行的合金包括铁硅(FeSi)或铁硅铝(FeSiAl),以及包括非晶铁和坡莫合金在内的其他组合物。这类分布式气隙磁芯具有颗粒结构,其饱和特性比铁氧体电感器要软,因此对小偏移直流偏置较不敏感。另一方面,其磁导率通常要比铁氧体小约一个数量级,其有机粘合剂也不能耐受高工作温度。
 
新的金属薄片压制技术现在可以生产出磁导率与NiZn铁氧体相当、软饱和特性与传统粉末芯可比的分布式气隙磁芯材料。此外,这种新型FlakeComposite磁芯还具有更高的温度稳定性、更高的最高工作温度和机械灵活性。这种灵活性增加所带来的不仅是有机会创造超薄电感器,而且还可以在PCB内嵌入强大的电感器而节省空间,并可以探索机会,将新型电感器(如横向磁通电感器)与有源器件一起集成在下一代电源转换设计中。
 
性能比较

图1给出了FlakeComposite磁芯材料与铁氧体、粉末和薄膜磁芯的关键磁导率和饱和特性对比。


图1:FlakeComposite的磁导率与铁氧体相当,并具有卓越的饱和性能。

众所周知,铁氧体材料在高频、高温或高直流偏流值下会失去磁导率,导致电感值迅速降低,从而影响性能。为了确保FlakeComposite磁芯电感器至少能够与铁氧体电感器一样好,我们需要比较频率、温度和直流偏置性能。
 
图2比较了FlakeComposite与NiZn铁氧体复合磁导率的频散。两种材料的曲线图显示,磁导率在约6MHz以上迅速降低,这表明FlakeComposite在工作频率高达1MHz的开关转换器中,性能与NiZn相同或者更好。

 
图2:对于高达数MHz频率的电源应用来说,FlakeComposite所提供的性能与NiZn铁氧体相当。

对磁饱和特性进行比较,FlakeComposite进入饱和要比NiZn铁氧体更软,并且温度相关性更低,因此大有裨益(图3)。


 图3:与NiZn铁氧体相比,FlakeComposite的磁饱和曲线更软,温度相关性更低。

图4对FlakeComposite与NiZn铁氧体和传统金属复合材料(粉末)的直流偏置性能进行了对比。FlakeComposite结合了两种类型的优势,在低偏置下具有与NiZn相当的优异磁导率,而在高偏置下则可保持更高的磁导率,并且温度相关性最低。


图4:当施加高直流偏置电场时,直流偏置特性显示FlakeComposite具有更高的磁导率。

如果电感器工作温度达到磁芯材料的居里温度——在该温度下磁芯会失去磁性——则磁芯磁导率会迅速下降,从而使电感快速损失。如图5所示,FlakeComposite的居里温度也高于典型的NiZn或MnZn铁氧体。

 
图5:FlakeComposite的居里温度更高,可确保在更高的工作温度下保持电感值。

电感器变薄且占位面积变小

为了不断降低负载点(PoL)转换器等电源转换模块的占位面积,业界已提出集成有源和无源元器件的新设计。与先前用于构建薄型电感器的传统纵向通量模式不同,这些设计所用平面电感器经过专门设计,因而具有横向通量模式。随着电感器厚度的降低,与传统的纵向通量器件相比,横向磁通电感器显现出越来越优越的电感。FlakeComposite的机械特性可实现厚度为50μm至2mm的电感器,因此非常适合制造超薄横向磁通电感器。
 
采用FlakeComposite制造的电感器极薄却坚固,为了帮助节省占位面积,在将其嵌入到PCB时也可实现固有对齐,并且与传统铁氧体磁芯相比,也可降低高达40%的电感器高度。
 
弹性高磁导率材料

除了可用于功率电感器之外,FlakeComposite的磁性和机械性能组合还适用于包括EMI抑制和屏蔽无线输电线圈在内的电磁屏蔽应用,从而可优化充电性能并保护附近的电子设备。 FlakeComposite技术是基美电子Flex Suppressor®产品的核心,事实证明这类产品可在各种应用中减少电磁噪声。
 
总结

FlakeComposite这种新方法可以优化电感器的磁芯性能,并进一步拓展机会,实现未来电源转换电路的小型化设计,因此它将超越当前铁氧体磁芯材料所取得的成就。FlakeComposite可提供类似的磁导率,以及卓越的饱和特性、直流偏置性能和更高的温度性能,进而实现超薄功率电感器设计,并为PCB嵌入式电感器提供所需的机械性能,从而实现真正的节省空间。

猜你喜欢
中电网移动|移动中电网|频道导航区