心音身份识别是指一种利用人体心音信号进行身份识别的技术,心音是心脏及心血管系统机械运动状况的反映,包含了心脏各个部分本身及相互之间作用的生理和病理信息。因此,心音信号在不同的人身上有着完全不同的特征并且具有极高的稳定性,可以用作生物识别技术的识别特征。心音信号除了很难伪装,伪造及篡改外还具有容易获取的优势,因此人体心音信号可以为一种新型生物识别方法。
本文开发了一种基于LabVIEW的嵌入式心音身份识别系统,该系统使用方便灵活,能够实现对用户身份的注册、辨识和确认。
1、心音信号身份识别原理
心音信号用于个人身份识别主要包括两步:特征提取和模式匹配,特征提取是从心音信号中提取到唯一的表现被测者身份的有效且稳定可靠的特征,模式匹配是对训练和鉴别时的特征模式做相似性匹配,本文采用基于梅尔频率倒谱系数(MelFrequencyCepstrumCoefficient,MFCC)特征提取和矢量量化(VectorQuantization,VQ)模型匹配的识别算法设计心音身份识别系统。
MFCC主要运用于说话人识别,它将频谱转化为基于频率的非线性频谱,然后再转换到倒频谱上。
对MFCC做适当的改进,即可适用于心音的身份识别。根据心音信号的频域特性,Mel滤波器组截止频率选择为500Hz;由于心音信号具有准周期性,没有语音信号那么强的非平稳性,所以信号的帧长选择为256ms而非语音信号的20ms;MFCC系数选择为32阶,并且心音信号的高阶MFCC系数所含信息更多,加上一阶差分的系数可使信号动态特性强。VQ是由标量量化推广和发展而来的。标量量化是用若干个离散的数字值来表示每一个幅度具有连续取值的离散时域信号,矢量量化则是将若干个幅度连续取值的时域采样信号分成一组,即构成矢量,然后用若干离散的数字值来表示各种矢量,在模式识别的研究中,需要完成对每一个所要识别的矢量进行分类的任务。基于VQ的心音身份识别模型,相对于其它的识别模型(如高斯混合模型)来说,计算简单,具有实时性。
2、系统实现
2.1硬件系统实现
本系统硬件由上位机和下位机组成,整体结构如图2所示。上下位机之间通过HC-06蓝牙模组进行通信,HC-06蓝牙模组采用CSRBC04蓝牙技术,内置蓝牙天线,发射功率为Class2,灵敏度可达-80dBm。
..