作者:Kevin Chen
在混合动力汽车/电动汽车(HEV/EV)中,发动机并不会被用来运行加热和冷却系统,这与内燃机(ICE)汽车情况不同。我们使用两个关键系统来替代这一功能:使用BLDC电机驱动空调压缩机,使用正温度系数 (PTC) 加热器来加热冷却剂。
PTC加热器依靠高压电池来运行,需要几千瓦的功率。图1显示了由低侧MOSFET/IGBT电源开关驱动的典型PTC加热器方框图。
图1:汽车内部加热器模块的方框图
过去,使用双极结型晶体管(BJT)图腾柱驱动低侧配置中的电源开关。但是,由于栅极驱动器IC的诸多优势及其附加特性,它日益取代了这些分立式解决方案。图2显示了典型BJT图腾柱配置与典型栅极驱动器IC。
图2:BJT图腾柱(左)与栅极驱动器芯片UCC27517A-Q1(右)
分立式电路的一个显著缺点是它不提供保护,而栅极驱动器IC集成了对于确保可预测和稳定的栅极驱动非常重要的功能。UCC27517A-Q1符合汽车级 AEC-Q100 标准,内置欠压锁定 (UVLO) 功能。这个集成功能会钳制UCC27517A-Q1的输出,从而防止开关及其输出端的MOSFET上出现漏源极电压。电源电压达到UVLO上升阈值之后,驱动器可以向电源开关提供电流。
相比之下,BJT图腾柱允许MOSFET产生压降,但漏极电流会显著上升。电流上升会导致功耗过大,并可能损坏MOSFET。
图3显示了在3.3V启动时两个MOSFET的热感图像。左侧是由UCC27517A-Q1驱动的MOSFET,右侧是由BJT图腾柱驱动的MOSFET。由于BJT图腾柱未集成UVLO,所以会因功耗增加而使MOSFET过热
图3:UCC27517A-Q1驱动的MOSFET(左)和BJT图腾柱动的MOSFET(右)在3.3V启动时的热感图像
分立式BJT图腾柱电路中可增加外部UVLO电路,但这会进一步增加元件数,从而导致电路板尺寸更大和BOM成本更高。与分立式栅极驱动方案相比,栅极驱动器IC(例如,UCC27517A-Q1)需要的元件更少,并且占用更少的PCB空间。图4突出显示了UCC27517A-Q1的PCB布局(左)与分立式低侧栅极驱动器的PCB布局(右)。
图4:UCC27517A-Q1的PCB布局(左)与分立式低侧栅极驱动器的PCB布局(右)
UCC27517A-Q1布局由五个元件组成,而BJT图腾柱布局由10个元件组成。与分立式布局相比,栅极驱动器IC布局可以减少大约65%的面积。具有更少元件的更小总体布局使用的PCB空间更小,从而可降低成本和提高功率密度。
对于多通道解决方案,UCC27524A-Q1是一个双通道、低侧驱动器,可用于驱动多个电源开关。