中电网移动|移动中电网|高清图滚动区

单片机与单片机,怎样“交谈”?

几种常用单片机之间的通信方式

①采用硬件 UART 进行异步串行通信。这是一种占用口线少,有效、可靠的通信方式;但遗憾的是许多小型单片机没有硬件 UART,有些也只有 1 个 UART,如果系统还要与上位机通信的话,硬件资源是不够的。这种方法一般用于单片机有硬件 UART 且不需与外界进行串行通信或采用双 UART 单片机的场合。

②采用片内 SPI 接口或 I2C 总线模块串行通信形式。SPI/I2C 接口具有硬件简单、软件编程容易等特点,但目前大多数单片机不具备硬件 SPI/I2C 模块。

③利用软件模拟 SPI/I2C 模式通信,这种方式很难模拟从机模式,通信双方对每一位要做出响应,通信速率与软件资源的开销会形成一个很大的矛盾,处理不好会导致系统整体性能急剧下降。这种方法只能用于通信量极少的场合。

④口对口并行通信,利用单片机的口线直接相连,加上 1~2 条握手信号线。这种方式的特点是通信速度快,1 次可以传输 4 位或 8 位,甚至更多,但需要占用大量的口线,而且数据传递是准同步的。在一个单片机向另一个单片机传送 1 个字节以后,必须等到另一个单片机的接收响应信号后才能传送下一个数据。一般用于一些硬件口线比较富裕的场合。

⑤利用双口 RAM 作为缓冲器通信。这种方式的最大特点就是通信速度快,两边都可以直接用读写存储器的指令直接操作;但这种方式需要大量的口线,而且双口 RAM 的价格很高,一般只用于一些对速度有特殊要求的场合。

从上面几种方案来看,各种方法对硬件都有很大的要求与限制,特别是难以在功能简单的单片机上实现,因此寻求一种简单、有效的,能在各种单片机之间通信的方法具有重要的意义。③、④方案中,双方单片机要传递的每一位或每一个字节做出响应,通信数据量较大时会耗费大量的软件资源,这在一些实时性要求高的地方是不允许的。

针对这一问题,假设在单片机之间增加 1 个数据缓冲器,大批数据先写入缓冲区,然后再让对方去取,各个单片机对数据缓冲器都是主控模式,这样必然会大大提高通信效率。谈到数据缓冲,我们马上会想到并行 RAM,但是并行 RAM 需要占用大量的口线(数据线+地址线+读写线+片选线+握手线),一般在 16 条以上。这是一个让人望而生畏的数字,而且会大大增加 PCB 面积并给布线带来一定的困难,极少有人采用这种方式。串行接口的 RAM 在市场上很少见,不但难以买到而且价格很高。移位寄存器也可以做数据缓冲器,但目前容量最大的也只 128 位,因为是“先进先出”结构,所以不管传递数据多少,接收方必须移完整个寄存器,灵活性差而且大容量的移位寄存器也是少见难买的。一种被称为“铁电存储器”芯片的出现,给我们带来了解决方法。

利用铁电存储器作为数据缓冲器的通信方式

铁电存储器是美国 Ramtran 公司推出的一种非易失性存储器件,简称 FRAM。与普通 EEPROM、Flash-ROM 相比,它具有不需写入时间、读写次数无限,没有分布结构可以连续写放的优点,因此具有 RAM 与 EEPROM 的双得特性,而且价格相对较低。

现在大多数的单片机系统配备串行 EEPROM(如 24CXX、93CXX 等)用来存储参数。如果用 1 片 FRAM 代替原有 EEPROM,使它既能存储参数,又能作串行数据通信的缓冲器。2 个(或多个)单片机与 1 片 FRAM 接成多主 - 从的 I2C 总线方式,增加几条握手线,即可得到简单高效的通信硬件电路。在软件方面,只要解决好 I2C 多主 - 从的控制冲突与通信协议问题,即可实现简单、高效、可靠的通信了。

实例(双单片机结构,多功能低功耗系统)

(1)硬件

W78LE52 与 EMC78P458 组成一个电池供电、可远程通信的工业流量计。78P458 采用 32.768kHz 晶振,工作电流低,不间断工作,实时采集传感器的脉冲及温度、压力等一些模拟量;W78LE52 采 11.0592MHz 晶振,由于它的工作电流较大,采用间断工作,负责流量的非线性校正、参数输入、液晶显示、与上位机通信等功能,它的 UART 用于远程通信。2 个单片机共用 1 片 I2C 接口的 FRAM(FM24CL16)组成二主一从的 I2C 总线控制方式,W78LE52 的 P3.5、P3.2 分别与 78P458 的 P51、P50 连接作握手信号线 A 与 B。我们把握手线 A(简称 A 线)定义为总线控制、指示线,主要用于获取总线控制权与判别总线是否“忙”;握手线 B(简称 B 线)定义为通知线,主要用于通知对方取走数据。

(2)I2C 总线仲裁

由于我们采用的是二主一从的 I2C 总线方式,因此防止 2 个主机同时去操作从机(防冲突)是一个非常重要的问题。带有硬件 I2C 模块的器件一般是这样的,器件内部有 1 个总线仲裁器与总线超时定时器:当总线超时定时器超时后指示总线空闲,这时单片机可以发出获取总线命令,总线仲裁器通过一系列操作后确认获取总线成功或失败;超时定时器清零,以后的每一个 SCL 状态变化对总线所有主机的超时定时器进行清零,以防止它溢出,指示总线正处于“忙”状态,直到一个主机对总线控制结束不再产生 SCL 脉冲;超时定时器溢出,总线重新回到“空闲”状态。但是目前大多数单片机没有配备硬件 I2C 模块,而且当 2 个主机的工作频率相差较大时,超时定时器定时值只能设为较大的值,这样也会影响总线的使用效率。

(3)通信协议

一个可靠通信体系,除了好的硬件电路外,通信协议也至关重要。在单片机系统 RAM 资源与执行速度都非常有限的情况下,一个简捷有效的协议是非常重要的。下面具体介绍一种比较适用于单片机通信的协议,数据以包的形式传送。数据包结构:

①包头——指示数据包的开始,有利于包完整性检测,有时可省略;

②地址——数据包要传送的目标地址,若只有双机通信或硬件区分地址可以省略;

③包长度——指示整个数据包的长度;

④命令——指示本数据包的作用;

⑤参数——需要传送的数据与参数;

⑥校验——验证数据包的正确性,可以是和校验、异或校验、CRC 校验等或者是它们的组合;

(4)通信流程

首先,要在 FRAM 里划分好各个区域,各个单片机的参数区、数据接收区等。然后,单片机可以向另一个单片机发送数据包,发送完毕之后通过向握手线 B 发送 1 个脉冲通知对方取走数据;接收方读取数据并进行处理后,向 FRAM 内发送方的数据接收区写入回传数据或通信失败标志,再向握手线 B 发送 1 个脉冲回应发送方。

如果需要单片机 2 发送的话,只需交换一下操作过程即可。

总结

通过实践可知,以上方法是可行的。与其它方法相比具有以下优点:

①简单。占用单片机口线少(SCL、SDA、握手线 A、握手线 B)。

②通用。软件模拟 I2C 主机方式,可以在任何种类的单片机之间通信。

③高效。由于采用数据缓冲,可以在不同时钟频率、不同速度的单片机之间通信;读写数据时,可以 I2C 总线的最高速度进行,可以实现 1 次传送大量数据;在一个单片机向 FRAM 传送数据时,另一个单片机无须一一作出响应或等待,可以进行其它程序操作,提高软件工作效率。

④灵活。通信硬件接口对于各个单片机是对等的,通过软件配置,每个单片机既可以根据需要主动发送通信,也可以只响应其它单片机的呼叫。

以下是需要注意的地方:

①为了提高通信效率,握手线 B 最好使用中断端口,负脉冲宽度一定要满足速度较低单片机中断信号要求。如果没有中断的话应增加 1 条口线,用改变端口状态的方法通知对方,等待对方查询,而不是负脉冲。

②向对方发送负脉冲时,应屏蔽自己的中断。

③由于参数与通信缓冲区同时设在同一片 FRAM 内,要避免对参数部分的误操作。一个较好的解决办法是把参数存放在地址的后半部分(A2=1),在进行通信操作时,把 FRAM 的 WP 引脚拉高(地址在后半部分的单元写保护),这样可以有效地防止测验时对参数区误操作。

④由于 I2C 总线在一个时间段内只有 1 个主机和 1 个从机,所以当 1 个单片机正在写通信数据时,另一个单片机是不能对 FRAM 进行操作的。如果需要实时、频繁地读取 FRAM 中参数的话,请预先将参数读入 RAM 单元使用或另外增加专门存放参数的芯片。

猜你喜欢
中电网移动|移动中电网|频道导航区