中电网移动|移动中电网
 
中电网移动|移动中电网|高清图滚动区

采用低压差大电流集成可调稳压芯片实现半导体激光器驱动电路的设计

  二极管激光器及二极管泵浦的固体激光器现已成为固体激光器的发展主流,其转换效率高,稳定性好、可靠性高,是迄今惟一不需维护的激光系统,具有输出的光束质量高、体积小、结构紧凑等优点,已经获得了广泛的应用。二极管泵浦固体激光器设计中涉及许多关键技术,电源技术是其中之一,它涉及的主要问题是如何根据固体激光器的要求设计半导体激光二极管的驱动电源。半导体激光器驱动电源的基本要求是: 恒流源、电流稳定度高(至少应小于10-3)、纹波系数小、具有特殊的抗电冲击措施和保护电路[1]。在实际项目中,二极管泵浦固体激光器用于机载导弹测距,采用808nm半导体大功率激光器作为泵浦源,要求驱动电源体积小,驱动电流2A,驱动方式为脉冲驱动,脉冲频率和宽度独立可调、蓄电池供电(5V左右)。目前许多的商用的或用于试验研究的驱动电源很难完全满足使用要求,因此为其设计简单、方便、稳定、可靠的驱动电源具有重要的意义。

  1、电路结构及原理:

  该半导体激光器驱动电源由脉冲电路、控制电路、稳流电路和保护电路的四部分组成,系统框图如图1所示。

  

  1.1 稳流电路

  在稳压或稳流电源中,目前常用的是开关电源和线性电源,由于开关电源的瞬态响应较差、纹波系数较大,对瞬态特性和温度度要求较高的半导体激光驱动电源采用线性电源较为合理。为了实现高的电流稳定度,驱动电路大多采用负反馈的控制方法,原理图见图2。工作时,通过电阻电流采样反馈为驱动电流提供有源控制。方法是在功率晶体管的源极串联一个采样电阻RS,用于取样反馈,该取样电压经过I/U转后,作为反馈电压与设定电压进行比较,进而通过调整功率晶体管的电阻大小对输出电流If进行调整。整个闭环反馈系统处于动态平衡中,以达到稳定电流的目的。输出电流If与设定的参考电压Vref的关系可由负反馈原理得到 ,上式只是一个近似的表达,随着负载的不同和输入电压的变化,输出电流还是有微小的变化,但是由于前置放大器放大倍数很高,使得输出电流变化很小,稳定度一般能达到10-5量级。

  实际上,线形稳压源和稳流源的结构原理基本相同,只是输出方式的不一样,即负载的加载方式不同,譬如,在图2中,如果负载也采样电阻并行连接,图2 就成了一个恒定输出电压为Vref的稳压源。同样的,基于这种方式的稳压源稍加调整也可作为恒流源。目前,各种可调稳压器集成芯片技术成熟,产品丰富,因此可以对这种芯片的功能进行扩展以满足我们的设计要求。

  考虑到实际应用情况,如电源体积、输出电流大小、特别是瞬态响应,我们选用ONSEMI公司的低压差大电流集成可调稳压芯片NCP5662,它的瞬态响应比同类稳压器要快,建立时间1-3us,可承受电流值达2A,具有内部电流限制和热保护功能等,其功能框图如图3所示。图3显示的是其稳压工作的情况,根据前面叙述的原理,对该集成电路进行扩展以将其设计成为一个稳定度很高的恒流源,几种扩展方法中,实验证明比较合理的工作方式如图4所示。先不考虑图中虚框内的电路,当加电之后,电路开始工作,进入稳态时,由于集成电路内部的反馈作用,R11两端的

  因此,改变R3、R11、R7可以灵活的调整输出电流的值。按照图4中各元件的取值,通过计算得到Is=2A,此恒定电流将流过激光二极管到地,由于 NCP5662内部的比较器具有很高的放大倍数,因此,电流的稳定度非常的好。另外,从R11和NCP5662的GND端流出到负载的电流小于4mA,与2A相比影响很小。图中C8的作用为改善电源的瞬态响应特性,在实验分析部分将详细叙述。

  1.2 脉冲控制电路

  脉冲控制电路如图4虚框所示,当脉冲控制信号Vpulse为低电平时,三极管Q1 截止,其集电极被电源电压控制在高电平,二极管D5正向导通,因此NCP5662的ADJ端被强制在高电平,这个电平值必须高于恒定电流流过负载时ADJ端的电平值,让R11两端电压远远高于0.9伏,使得NCP5662内部的功率晶体管截止,从而使流过LD的电流近似为零。因此,与激光二极管并联的1K电阻R11的作用是防止截止状态时激光二极管出现的高阻特性让ADJ端的电平出现不稳定,当负载呈现一般的电阻特性时,R11可以不要。当Vpulse跳向高电平时,晶体管Q1的集电极电位转向低电平,从而瞬间让ADJ端电位很低,使得R11两端电压远低于0.9伏,从而使NCP5662内部的功率晶体管导通, ADJ的电位开始上升,最后进入稳定工作阶段, 恒定电流流过激光二极管。二极管D5也进入反偏状态,起隔离作用,直到下一个低电平Vpulse控制信号的到来,如此反复,实现了大电流的快速开关,这主要得益于NCP5662的快速响应特性,其本质是因为其内部集成了高速放大器及高速功率放大晶体管。

  脉冲控制电路是整个设计中最重要的地方,虽然还有其他方式可实现这一个功能,如在负载上串联一个功率MOS开关,或在电源端串联一个高边MOS开关,但理论和实验都证明了这两种方式存在的问题,如电源的稳定性和响应特性都没有图4所示的工作方式好。

  1.3 脉冲产生电路

  图4中的脉冲控制信号Vpulse来自脉冲产生电路,脉冲产生电路如图5a和图5b所示。

  5a为该电源内部振荡电路,由7555构成,四个与非门的作用是选通接受内部控制信号还是外部控制信号输出到Vtrigger,Vtrigger 信号控制所需要的Vtrigger信号的频率。图5b是一个由555定时器构成的下降沿触发的单稳电路。该单稳电路的特点是脉冲宽度与7555定时器5端的电压成非常好的线形关系,这主要得益于应用了由放大器LM358和电容C6构成的自举电路,因此,这就实现了独立控制脉冲恒流源脉冲频率和脉冲宽度的功能,脉冲宽度能接受外部电压信号的控制,如来自温度传感器热敏电阻上的电压信号。

  1.4 保护电路

  由于半导体激光器对于电冲击的承受能力很差,在使用过程中,出现较多的电冲击是电源开启或关断过程中产生的电压、电流浪涌冲击。所以电源中必须采取保护措施,传统的保护电路方式很多,如采用慢启动电路、短路保护开关等。在该应用中,该电源是蓄电池供电,供电电压波动较小,且选用的集成芯片内部具有慢启动、热保护、尖峰电流限制功能,因此只需在半导体激光二极管两端反向并联一个普通二极管以防止反向浪涌。

  2、试验结果及分析

  上述各个电路模块都预先在Pspice A/D上进行了仿真和优化,最后制作了实物电路,试验结果达到了预期的设想。当负载为纯电阻1Ω、脉冲控制信号周期1ms、脉宽约40us、R3两端无并联电容时,R7两端的电压波形如图6所示。从前面可知,R7两端的电压与流过负载的电流完全对应,只差一个比例系数。从示波器上的看出,恒流脉冲的上升时间约2us,下降时间约1us,在同样的条件下,负载为808nm大功率半导体激光器时R7两端的电压波形如图7所示。前面负载选用纯电阻1Ω的原因是: 2A电流流过激光二极管时,稳态下该激光器的等价负载电阻约1Ω,这样可以更好的对比他们的工作情况。从示波器上可以看出,在上升阶段,有一段持续时间约5us的衰减振荡,这主要是因激光二极管到在达稳态之前,它的阻抗特性变化较大,如寄生电感和电容。从电路原理上分析,在R3两端并联一个电容C8是可以消除这种性能的恶化,通过试验测得,电容取值在1-2nf之间比较合适,电容取值过小,震荡不能完全消除,取值过大会使得脉冲缓慢沿着斜坡上升,响应变慢。图8显示了电容为1nf时R7两端的电压波形,可见,输出特性改善了许多。这也说明对于恒流源,负载的阻抗特性,如并联电感、串联电容对电源输出的瞬态特性影响很大!在用恒流源驱动半导体激光器时要特别注意。

  电源中大多数电阻电容采用贴片式元件,两层布线,元件双面布置,整个电源体积可以做得非常小,可以达到4cm×4cm×1.5cm, 非常方便的应用于如激光测距一类对电源体积要求较小的应用中,另外,在6.5v蓄电池供电下,用该电源驱动808nm大功率半导体二极管,反复进行开了开关测试,激光器工作良好!

  3、 结果

  基于集成稳压芯片NCP5662,采用最少的器件,设计了低电压大电流脉冲半导体激光驱动电源,电源稳定、可靠、体积小、控制简单、脉冲宽度和频率独立可调。驱动电流2A时,脉冲上升时间小于4us,下降时间小于2us,响应迅速,无过冲、反冲,达到了机载导弹测距中对半导体激光器的电源要求。这也说明了合理选择成熟的稳压芯片可以设计功能丰富的恒流源。该电源中的设计思路可应用于其它脉冲恒流源的电源设计中。

猜你喜欢
中电网移动|移动中电网|频道导航区