中电网移动|移动中电网|高清图滚动区

低压运算放大器实现高压信号和电源工作的应用

可用的亚皮安偏置电流运算放大器并不多。可堪使用的器件常常被称为静电计级放大器,偏置电流低至数十飞安。遗憾的是,这些静电计放大器的低频电压噪声(0.1Hz到10Hz)为几微伏(峰峰值)。此外,其输入失调电压和失调温度系数一般也不符合要求。其共模抑制比(CMRR)和开环增益不够好,难以支持1 ppm线性度。最后,没有一款静电计能够承受高电源电压。

LTC6240系列提供0.25 pA偏置电流(典型值)和0.55μV p-p低频噪声。这对于输入缓冲器来说已经足够好了,但该器件仅支持最高12 V的电源。我们将不得不在放大器周围添加电路以使其适应更高的电压。

设计方法

图1显示了自举放大器的原理示意图。

LTC6240由Vp(通过增益为+1的缓冲放大器保持输出加5 V的值)和Vm(由另一个缓冲器驱动而保持输出减5 V的值)供电。

由于电源总是跟随输入信号(由LTC6240的输出缓冲),因此理想情况下根本没有共模输入误差。即使是平庸的CMRR也通过自举提升至少30 dB。该30 dB值是由Vp和Vm缓冲器的有限增益精度导致的。

LTC6240的开环增益也得到类似的提升。当内部增益节点和电源轨之间存在晶体管输出阻抗时,放大器电路会发生增益受限的情况。由于电源被自举到输出,所以很少有信号电流流过上述阻抗,而且开环增益的增加量与CMRR的提升量相似。但是,输出负载仍可能会限制开环增益。

也许不那么明显,但电路整体压摆率也被自举提高。通常,它受限于LTC6240内部静态电流和以电源为基准的补偿电容。当电源追随输入和输出时,很少有动态电流流入这些电容,放大器不会进入有限压摆率状态。缓冲放大器最终会限制整体压摆率。

高压电源Vhvp和Vhvm可能有干扰,但缓冲器输出会在很大程度上抑制干扰,LTC6240的电源抑制比(PSRR)将大大增强。

所以,这很棒;通过自举电源,缓冲器在多个方面得到改善。可能会出现什么问题?图1所示电路几乎肯定会振荡。考虑电源引脚行为的最佳方法是将其视为反馈环路的一部分:输出引脚电压乘以缓冲放大器频率响应,然后将乘以1/PSRR,加到输入端,最后乘以开环增益成为输出,如此循环往复。图2a显示了PSRR随频率的变化。

我们在PSRR曲线中没有获得相位数据,但假设它具有+90°相位。是的,这个+90°就像一个差异化因素。如图2b所示,从低频到100 kHz,开环增益具有-90°相位,之后该负值变得越来越大。缓冲器将具有有限频率响应,并且也将表现出相位滞后。将环路中的所有相位滞后相加可确保在一些频率下的反馈相位为0°或360°的倍数。如果在这些相位的电源环路增益大于1,振荡就会发生。PSRR幅度下降到4 dB的低点(衰减 = -4 dB → 增益 = 0.63,非dB),看起来环路可能永远不会有足够的增益来发生振荡。这很可能是错误的,因为PSRR同时适用于Vp和Vs,其PSRR增益相加会使幅度超过1。此外,缓冲器可能会有一定的峰化,之后其增益在高频发生滚降,从而将整体反馈幅度推高至1以上。我们还将看到,缓冲器必须驱动稍大的电容,并且会具有更多的相位滞后。无论如何,LTspice®中的电路仿真表明会发生大信号振荡(LTC6240的频率响应和非线性体现在宏模型中)。

实际实现

图3显示了完整电路。

请注意,1000 pF旁路电容必须与LTC6240电源引脚紧密连接。运算放大器有数十个内部晶体管,在该放大器中,晶体管的Ft量级为GHz。它们常常以反馈方式彼此连接,除非安装了旁路电容,否则它们可能在高交流阻抗电源下发生振荡。1000 pF足以消除这些振荡。我们还希望电源旁路电容远大于任何输出负载电容,因为在高频时,负载电容上的电压转换会导致电流流向电源轨,并可能调制电源电压,通过PSRR反馈引起振荡。因此,旁路电容会降低频率下的电源调制,相当于降低从输出到电源的反馈增益。

压摆这些旁路电容会需要很大的电流,而且必须是双向的。Q5和Q6是射极跟随器,可以驱动旁路电容的压摆电流。Q3和Q4是偏置二极管,用于设置Q5和Q6静态电流。Q2为这些二极管和齐纳二极管D1(实际上是并联基准电压源IC)提供偏置电流,D1设置相对于输出的正电源电压。Q2的集电极是一个电流镜的输出,该电流镜由高压轨之间的R9偏置。如果电源电压不是恒定值,可以用两个电流源代替R9。

Q7至Q12形成与之前所述相当的Vm减电源驱动器。请注意齐纳电压的不匹配是有意为之的:Vp比输入/输出高5V,Vm比输入/输出低3 V。这种不匹配使输入电压的中点位于LTC6240的电源限制输入范围以内,从而优化压摆波形。

通常,LTC6240的电源电流会消耗Q5的发射极电流,并基本上关闭Q6,所以Vp缓冲器输出阻抗大部分是R3。因此,电源反馈Vp路径的带宽约为1/ (2π × 100 Ω × 0.001 µF) = 1.6 MHz。这保证了在10 MHz及以上的频率(此时LTC6240的开环相位向振荡发展),Vp环路增益远小于1。100Ω电阻还让跟随器Q5不必直接驱动1000 pF电容。发射极跟随器会有输出电感,可能与容性负载发生谐振,引起振铃甚至振荡。

设计自举在1.6 MHz以上的频率会失败后,我们将看到整体电路的完美行为在频率超出大约100 kHz时会降级。如果输出不能完全跟随输入,自举的好处将会打折扣。带Cin的Rin将带宽限制在100 kHz,这是ADC跟随缓冲器的系统抗混叠滤波器的一部分,它还会衰减无线电干扰和不支持的压摆率。

该电路必须能够承受任何不受限制的压摆输入信号或ESD,因此Rin也用于限制输入故障电流。电阻有四个串联段,以便分担输入过驱,暂时承受1 kV的电压。根据信号源和预期过载,可以减小输入电阻。

LTC6240内部有保护二极管,可将输入过压电流引导至Vp或Vm。允许进入LTC6240输入的最大故障电流为10 mA,但如果有周围电路可以快速切断输入故障,则在短时间内可以增加该电流。该电路的预期应用中存在SPDT继电器,当未通电时,其将缓冲器的输入连接到÷10网络。通电后,继电器直接连接输入。因此,当未通电时,缓冲器连接到远大于10 kΩ的源阻抗,故障电压和电流降低的幅度与10 mA连续额定值相当。应用的输入范围为±400 V,故障容差为±1000 V。这只有在有两个比较器的情况下才能安全地实现,比较器检测输入过压并快速释放继电器。这可以在1 ms至2 ms内完成,允许100 mA瞬态输入电流,此电流不会熔化LTC6240的保护二极管。请注意,D3至D6用于将输入过载电流引导至Vhvp或Vhvm电源,该电流此前已通过LTC6240导向Vp或Vm。这些电源可能无法吸收过载电流,因为相对于正常供电操作,该电流是向后流动的。我们将依靠足够大的旁路电容来安全地保持电源电压,同时等待继电器开关减压。对于100 mA过载,我们将需要100μF电容来使电源在2 ms内的电压变化保持在2 V以内。

猜你喜欢
中电网移动|移动中电网|频道导航区